Large aeolian ripples on Mars

Post contributed by Dr. Ryan C. Ewing, Department of Geology and Geophysics, Texas A&M University

Ripples cover the surfaces of sand dunes on Earth and Mars. On Earth, ripples formed in typical aeolian sand (e.g., 0.1 and 0.3 mm) range in wavelength between 10 and 15 cm and display a highly straight, two-dimensional crestline geometry. Ripples are thought to develop through a process dominated by the ballistic impacts of saltating sand grains in which wavelength selection occurs through the interplay of grain size, wind speed, the saltation trajectories of the sand grains, and ripple topography.

2d_ripples_DeathValley

Figure 1: Wind-blown impact ripples from Mesquite Flat Sand Dunes, Death Valley, USA. Pen is ~15 cm. Inferred transport direction is to the right on the image. Image credit: Ryan C. Ewing

(more…)

Debris-Covered Glaciers on Earth and Mars

Post contributed by David P. Mayer, Department of Geophysical Science, the University of Chicago

Debris-covered glaciers are glaciers whose ablation zones are at least partially covered by supraglacial debris. On Earth, debris-covered glaciers are found in all major mountain glacier systems. The debris itself is primarily derived from rockfall above the accumulation zone. This material becomes entrained in the accumulating ice and is carried englacially before emerging in the ablation zone. On Mars, numerous mid-latitude landforms have been interpreted as debris-covered glaciers based on their geomorphic similarity to nearby ice-rich landforms such as lobate debris aprons (LDA), as well as their similarity to terrestrial debris-covered alpine glaciers (Head et al., 2010 and refs. therein).

Image1_mullins_glacier

Image 1: Aerial photo of Mullins Glacier in Beacon Valley, Antarctica, a debris-covered glacier and possible analog to certain landforms on Mars. USGS aerial photo TMA 3080/275. Available from http://www.pgc.umn.edu/imagery/aerial/antarctica.

(more…)

Martian Maars: valuable sites in the search for traces of past martian life

Post contributed by Dr. Sandro Rossato, Department of Geosciences, University of Padova, Padova, Italy

Fig1

Figure 1: Terrestrial maars. (a) is a group of three maars filled with water in the Eifel region, Germany (rim-to-rim diameter ~0.5-1 km) (“Maare” by Martin Schildgen – Own work. Licensed under CC BY-SA 3.0 via Wikimedia Commons – https://commons.wikimedia.org/wiki/File:Maare.jpg#/media/File:Maare.jpg). (b) shows the Wabah maar, located in Saudi Arabia (rim-to-rim diameter ~2 km) (courtesy of Vic Camp, San Diego State University).

Terrestrial maar-diatremes are small volcanoes (see this previous post for a general description) which have craters whose floor lies below the pre-eruptive surface and are surrounded by a tuff ejecta ring 2-5 km wide (Figure 1) that depends on the size of the maar itself and on the depth of the explosion (Lorenz, 2003). Maar-diatremes constitute highly valuable sites for in situ investigations on planetary bodies, because they expose rocks at the surface from a great range of crustal depths and are sites which could preferentially preserve biomarkers.

(more…)

Inverted wadis on Earth: analogs for inversion of relief on the Martian surface

Post contributed by Abdallah S. Zaki, Department of Geography, Ain Shams University.

The evolution of inverted topography on Earth and Mars can result from surface armouring of the channel, infilling of channels/valleys by lava flows, and cementation of valley floor by secondary minerals (such as, calcium carbonate, gypcrete, ferricrete, calcrete) – see post by Rebecca Williams. This post specifically concerns inverted wadis, which have been identified in a number of localities on Earth, including multiple localities in the Sahara and Arabia, Australia, the Ebro Basin of Spain, Utah, and New Mexico and west Texas (e.g., Miller, 1937; Maizels, 1987; 1990). Inversion of relief is observed commonly on Mars, for example, Eberswalde Crater, Arabia Terra, Juventae Chasma, Olympus Mons, and Antoniadi Crater (e.g., Pain et al., 2007; Williams et al., 2007).

Image 1

Image 1: Google Earth image of the dendritic pattern preserved in inverted wadis in eastern Saudi Arabia.

(more…)

Very recent debris flow activity on Mars

Post contributed by Dr Andreas Johnsson, Department of Earth Sciences, University of Gothenburg, Sweden.

The question whether Martian gullies formed by fluvial processes or by dry mass wasting have been a source of heated debate ever since their discovery (Malin and Edgett, 2000). Intense research within the last decade however points to a fluvial origin for a majority of gully landforms on Mars.

Image 1. A) Overview of the pole-facing interior crater wall (PSP_006837_1345). B) Clearly defined paired levee deposits (white arrows). C) Multiple overlapping lobate deposits (white arrows). D) Gully fan dominated by debris flows (white arrows). E) Well defined medial deposit (debris plug) (white arrow).  Image credit: NASA/JPL/UofA for HiRISE.

Image 1. A) Overview of the pole-facing interior crater wall (PSP_006837_1345). B) Clearly defined paired levee deposits (white arrows). C) Multiple overlapping lobate deposits (white arrows). D) Gully fan dominated by debris flows (white arrows). E) Well defined medial deposit (debris plug) (white arrow). Image credit: NASA/JPL/UofA for HiRISE.

(more…)

Closed (hydrostatic) pingos on Earth and possibly Mars

Post by Drs. Richard Soare, Susan Conway and Peter Grindrod

Closed-system (hydrostatic) pingos (CSPs) are perenially ice-cored (non-glacial) mounds formed primarily by the near-surface injection of pore water. Their shape ranges from circular and sub-circular to elongate and their size varies from a few to hundreds of metres in diameter. Some of them reach tens of metres in height (see Figs. 1a,b).

Image 1 Plan view of a thermokarst lake/closed-system pingo assemblage that lies 6 km sw of Tuktoyaktuk on the coast of the Beaufort Sea in northern Canada (690,26’,34” N, 1330,01’,52” W). Ibyuk Pingo, at the right, is ~48 m high; Split Pingo, at the centre, is ~38 m high. Both pingos display irregular cavities at their summits. These are markers of mound degradation. Image A27917- 35-1993, courtesy of the National Air Photo Library, Ottawa, all rights reserved. Arrow indicates approximate viewing direction of part b. b. Ground view of Split Pingo (at the right) and Ibyuk Pingo (at the left) from the Beaufort Sea. Note the slope-side cracks that radiate from the summit cavities. They too are markers of mound degradation. Image, courtesy of R. Soare.

Image 1 Plan view of a thermokarst lake/closed-system pingo assemblage that lies 6 km sw of Tuktoyaktuk on the coast of the Beaufort Sea in northern Canada (690,26’,34” N, 1330,01’,52” W). Ibyuk Pingo, at the right, is ~48 m high; Split Pingo, at the centre, is ~38 m high. Both pingos display irregular cavities at their summits. These are markers of mound degradation. Image A27917- 35-1993, courtesy of the National Air Photo Library, Ottawa, all rights reserved. Arrow indicates approximate viewing direction of part b. b. Ground view of Split Pingo (at the right) and Ibyuk Pingo (at the left) from the Beaufort Sea. Note the slope-side cracks that radiate from the summit cavities. They too are markers of mound degradation. Image, courtesy of R. Soare.

(more…)

Climbing and Falling Sand Dunes in Valles Marineris, Mars

Post by Matt Chojnacki, Devon Burr and Jeff Moersch, Earth and Planetary Sciences Department and Planetary Geosciences Institute, University of Tennessee Knoxville, USA

Aeolian transport of sand-sized particles on planetary surfaces is both enhanced and inhibited by the presence of topography.  Mountainous topography at all length scales significantly affects dune location, size, shape, and orientation [Pye and Tsoar, 1990].   The surface of Mars has both abundant sand dune populations and substantial topographic relief.  Perhaps the best example of the relationship between topography and relief is the ancient rift valleys of Valles Marineris, with over ~21,000 km2 of dune fields found within the ~10 km deep rift system [Chojnacki and Moersch, 2009].  This system of interconnected-chasms, provides natural sinks where wind blown sediment can accumulate.  Additionally, the substantial relief and the resulting atmospheric pressure gradient significantly influence the regional meteorology [Rafkin and Michaels, 2003].

Dune fields in Valles Marineris can be broadly divided into two classes: floor- and wall-related dune fields.  The “wall dunes” class dune fields are interpreted as climbing and falling dunes [Chojnacki et al., 2010].  On Earth, climbing dunes are formed when migrating dunes encounter and ascend a substantial slope or cliff (>10°), where there is no major wind flow blockage [Pye and Tsoar, 1990].  Falling dunes, found on the downwind side of large topographic highs, are formed by unidirectional down slope winds and gravity [Greeley and Iversen, 1985].

Climbing Dunes of Valles Marineris:

Image 1

Image 1: Oblique southward perspective views of Melas Chasma climbing dunes using a CTX Camera image (P16_007245_1648) over HRSC elevation (H0334). The white arrows indicate slip faces and are consistent with upslope transport. Vertical exaggeration is 2x.

(more…)

Water tracks on Earth and Mars

Post by Joe Levy, Department of Geological Sciences, University of Texas, Austin, Texas, USA

  Water tracks are zones of enhanced soil moisture that route shallow groundwater downslope in permafrost regions. Water tracks form in the active layer (the seasonally thawed portion of the permafrost) where melt water derived from snow-melt, ground ice melt, and exotic processes like salt deliquescence, concentrates in broad depressions in the ice table (the part of the permafrost that remains frozen) and flows downhill. Water tracks darken and lengthen during the summer melt season, and freeze-dry in winter, rendering them nearly undetectable from late fall to early spring.

Image 1. Quickbird satellite image of a water track in the vicinity of Lake Hoare, McMurdo Dry Valleys, Antarctica. Near-surface groundwater flows downhill from the top of the image towards the ice-covered pond at the bottom. Portion of Quickbird image orthowv02_10dec222046120-p1bs-103001000825e900_u08ns4326.

(more…)

Mercury’s Mighty Valles

Post by Dr. Paul K. Byrne, Carnegie Institution of Washington, USA

 Channel-like landforms termed “valles” (sing. “vallis”) have been observed on the Moon, Mars, and Venus, and recent results from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission show that the innermost planet hosts its own brand of valles, too. Resembling the broad outflow channels on Mars and Venus, five shallow, linear depressions form a channelized network at high latitudes in Mercury’s northern hemisphere. These valles are situated adjacent to expansive northern volcanic plains that cover some 6% of the planet’s surface, and likely conducted voluminous, low-viscosity lavas from these plains southward.

Image 1: This vallis has the steep sides, smooth floors, and erosional residuals characteristic of Mercury’s broad valles, and likely channeled lavas from left to right across the image. The image has a field of view of ca. 150 km. The 57°N parallel and 115°E meridian are shown, and Kofi basin is labeled. The image is a portion of MESSENGER’s Mercury Dual Imaging System (MDIS) global monochrome basemap, which has a resolution of 250 meters per pixel.

(more…)

Lava temperatures determine flow composition on Earth and Io.

Post by Robert Wright, and Mary C. Bourke,

Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, US.

Department of Geography, Trinity College, Dublin, Ireland.

Image 1: A Giant plume from Io’s Tvashtar volcano composed of a sequence of five images taken by NASA’s New Horizons probe on March 1st 2007, over the course of eight minutes from 23:50 UT. The plume is 330 km high, though only its uppermost half is visible in this image, as its source lies over the moon’s limb on its far side. Image source from NASA.

The temperature at which active lava is erupted correlates well with the composition of the lava.  Mafic lavas may be up to 200-330 degrees celsius hotter than felsic lavas. The range of temperatures observed on active lava surfaces can also be used to determine the style with which the lava is erupted (i.e. as aa or pahoehoe lava flows, as lava lakes, or as lava domes). This is possible because the ease with which the crust is fractured depends on the volumetric flux of lava and its rheology (Image 2). As a result, lava bodies that fracture their cool crusts more easily (like aa flows) have hotter temperature distributions than those that fracture their upper surfaces less readily (such as viscous lava domes). (more…)

Glass-rich sand dunes and plains suggest Ice-magma interactions on Mars

Post by Briony Horgan,

Postdoctoral Fellow, School of Earth and Space Exploration, Arizona State University, USA

Several large, overlapping basins dominate the northern hemisphere of Mars, and are collectively termed the northern lowlands. This ancient basin has been infilled by sediments and hosts some of the darkest terrains on the planet. A new spectral investigation of these dark terrains has revealed that they are almost entirely composed of iron-bearing glass. This is the first detection of glass on Mars, as most other martian surfaces exhibit a typical basaltic composition with abundant olivine and pyroxene. In total, glass-rich materials cover nearly ten million square kilometers in the northern lowlands (Horgan and Bell, 2012).

Image 1

Image 1 Caption: The prime meridian of Mars from Hubble. The large dark region in the northern hemisphere (Acidalia Planitia) is approximately 5 million square kilometers in area. The north polar cap and encircling north polar sand sea can also be seen at the top of the image (NASA/Lee/Bell/Wolff)

(more…)

Surface dissolution on Titan and Earth: Ontario Lacus and the Etosha Pan (Namibia) .

Post by Thomas Cornet, Olivier Bourgeois, Stephane Le Mouelic et al.,

Laboratoire de Planétologie et Géodynamique de Nantes, , Université de Nantes, UMR 6112, CNRS, Nantes, France.

Titan, Saturn’s major moon, possesses hydrocarbon lakes and seas in the polar regions [Stofan et al., 2007, Hayes et al., 2008]. Among these, Ontario Lacus (72°S, 180°E, Image 1) is the largest in the south (235 km-long, 75 km-wide). So far it is interpreted as a liquid-covered lake in Titan’s southern hemisphere because of its dark appearance in Cassini image data [Barnes et al., 2009; Turtle et al., 2009; Hayes et al., 2010; Wall et al. 2010], the identification of liquid ethane in its interior [Brown et al., 2008] and the smoothness of its surface [Wye et al., 2009].

Image 1

Image 1: Ontario Lacus (Titan) and the Etosha Pan (Namibia) as surface dissolution morphologies under arid climates. Credits: Envisat ASAR, data provided by the European Space Agency ©ESA 2009, ESA ®; Cassini RADAR, data provided by JPL/NASA. Link to high resolution image

(more…)

The effect of gravity on granular flows

Post by Dr. Maarten G. Kleinhans River and delta morphodynamics research group, University of Utrecht, The Netherlands.

 

Image 1

Image 1: Subscene of HRSC image presented in Kleinhans et al. (2010) showing an oblique view on a classic bed load-dominated Gilbert delta with a subaqueous lee slope at an angle of about 30°. Delta is about 5 km wide.

Granular materials avalanche when a static angle of repose is exceeded and freeze at a dynamic angle of repose. Such avalanches occur subaerially on steep hillslopes (Image 2), aeolian dunes and subaqueously at the lee side of deltas (Image 1). The angle varies from 25° for smooth spherical particles to 45° for rough angular particles. Noncohesive granular materials are found in many contexts, from kitchen to industry and nature. The angle of repose is an empirical friction parameter that is essential in models of numerous phenomena involving granular material, most of them actually occur at slopes much lower than the angle of repose. The angle of repose is therefore relevant for many geomorphological phenomena. (more…)

Weathering profiles on Earth and Mars

Post by Anne Gaudin, University Nantes, CNRS, Laboratoire LPGN, France

On Earth, weathering profiles that have developed in ultramafic rocks under tropical climate show a mineralogical transition between a Fe, Mg-rich smectite zone and an Al-rich kaolinite-bearing zone (e.g. Colin et al., 1990; Gaudin et al., 2005; Yongue-Fouateu et al., 2009). This evolution is due to an intense leaching of Mg2+ cations during the weathering process. The Murrin Murrin (MM) site is an example of such a profile located in the Archean Eastern Yilgarn Craton, in Western Australia. The MM profile is developed in serpentinized peridotite massifs over a 40 m thick sequence (Image 1) and shows three zones: serpentinized peridotites at the bottom, immediately overlain by Fe/Mg-bearing smectites and then Al-bearing phyllosilicates (kaolinite) mixed with iron hydroxides.

Image 1

Image 1: Weathering profile at the Murrin Murrin site which is currently mined for nickel, located in Western Australia (121º53’41’’E, 28º44’51’’S) (Gaudin et al., 2011).

(more…)

Inflated Lava Flows on Earth and Mars

Post by Dr. W. Brent Garry1, Dr. Jacob E. Bleacher2, Dr. James R. Zimbelman3, and Dr. Larry S. Crumpler4

  1. Planetary Science Institute, Tucson, AZ, 85719, USA
  2. Planetary Geodynamics Laboratory, Code 698, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
  3. Center for Earth and Planetary Studies, Smithsonian Institution, National Air and Space Museum, Washington, DC, 20013, USA
  4. New Mexico Museum of Natural History and Science, Albuquerque, NM, 87104, USA

In volcanology, we are traditionally taught about basaltic lava flows advancing as toes of pāhoehoe or as channeled ‘a‘ā flows.  However, under the right emplacement conditions, some basaltic sheet flows will inflate (thicken) from only a few centimeters or meters to almost 20 meters in height.  This process occurs when lateral advancement of the flow is inhibited and liquid lava is injected underneath the solid crust of stalled sections of the flow field, causing the crust to uplift over an expanding liquid core.  The study of inflated lava flows on Earth reveals distinctive morphologic features related to this process including tumuli, inflated sheet lobes (Image 1), squeeze ups, and inflation-rise pits [1,2].  The McCartys lava flow (Image 2) is a 48-km-long, basaltic lava flow in El Malpais National Monument, near Grants, New Mexico that exhibits many of the complex morphologic features related to the process of lava flow inflation.  By studying the morphologic features that are characteristic of inflated lava flows on Earth, we can begin to identify this style of lava flow on other planetary bodies, including the Moon and Mars [3,4,5].

Image 1

Image 1. Geologist Dr. Jake Bleacher stands on the edge of a 12 meter high inflated sheet lobe in the McCartys lava flow, New Mexico. This inflated lobe continues in the foreground and extends in the distance along the left side of the photograph. Cracks, up to 8 meters deep, have formed along the margin of the lobe as the brittle crust had to accommodate for the inflation. The lower elevation unit seen in the central part of this photograph is formed from breakouts along the margin of this inflated sheet lobe and has a hummocky and swale surface texture. Photograph by W. Brent Garry. Full Size Image.

(more…)

Tufa mounds on Earth and Mars

Post by Dr. Rogelio Linares1 and Dr. Alexis Rodríguez2,3

1Department of Geology- GATA, Autonomous University of Barcelona, Spain . 2 Planetary Science Institute, Tucson, AZ 85719, USA. 3State key Laboratory of Information Engineering on Surveying, Mapping and Remote Sensing, Wuhan University, China.

Tufa or travertine deposition at spring discharges often produce mounded landforms. They are one of the least understood calcareous landforms on Earth. Most documented mounds correspond to thermogene travertine. build-up associated with geothermal springs (where the carbon dioxide comes from thermally generated sources). See May 2009  image of the month. In contrast, work on meteogene mounds (where the carrier carbon dioxide originates in the soil and epigean atmosphere) are quite scarce (Linares et al, 2010).

Image 1

Image 1 (A) Shaded relief view of the Tremp Basin. (B) Geologic map of the study region in Isona area. (C) Electrical resistivity cross-sectional view of the central part of a tufa mound (inset in panel B). Note the cistern-like geometry of the pool facies and the overhanging upflow side of the rimstone. Number 1-2 respectively correspond to Rimstone and Rimstone with crescentic geometry.

(more…)

Rock breakdown on Earth and Mars: Linking the visible signs to the processes responsible

Post by Professor Heather Viles, School of Geography, University of Oxford, UK.

Observations in arid and hyper-arid environments on Earth show a range of processes, often acting together or in sequence, which cause rock breakdown.  These processes cut across the conventional categorisation into weathering and erosion and illustrate the synergistic associations of chemical, biological and physical weathering and aeolian abrasion.  Whilst there is no exact correlation between the processes at work and the features formed, because of geomorphological equifinality and complexity, nevertheless the appearance of breakdown features is a visual signature of the processes at work.

Print

Image 1: Boulders, cobbles and gravel strewn on the desert surface. a) Mars. b) Namib Desert

(more…)

Pseudocraters on Earth and Mars

Post by Dr. Jim Zimbelman , Center for Earth and Planetary Studies, Smithsonian Institution, Washington DC, USA.  

November_10

Image 1. View of pseudocrater at Lake Myvatn, Iceland (JRZ, 8/25/10).

Pseudocraters are distinctive landforms generated when a lava flow moves across ground containing either water or ice; the heat from the lava causes the water or ice to flash to steam, generating localized explosions through the lava.  In the Eifel area of Germany, such explosion craters are often (but not always) later filled with water, and they are called maars.  Important aspects of their formation, which distinguishes them from cinder cones and other monogenetic volcanic vents, is the lack of a source for erupting lava beneath the lava flow or resulting crater; the explosive action is strictly the result of the sudden generation of steam resulting from the heat of the overlying lava flow.  Pseudocraters are typically much broader and shallower than cinder cones, and they may excavate through the entire thickness of the overlying lava flow, ejecting some materials from the rock beneath the flow.  A classic locality for pseudocraters is the Lake Myvatn area of northern Iceland, where a 2000-year-old lava flow moved across wet or icy ground, generating numerous rootless explosion craters that were subsequently surrounded by the shallow waters of Lake Myvatn (Images 1 and 2). (more…)

Catastrophic flood bedforms on Earth and Mars

Posted by Goro Komatsu, International Research School of Planetary Sciences, Pescara, Italy.

Subaqueous bedforms produced by catastrophic floods are often represented by gravel dunes (also known as “giant current ripples”). While they may resemble aeolian dunes in remote sensing data, field observation reveals that they are composed of coarse-grained sediment including up to meter-scale boulders. Such examples are widely known in the Channeled Scabland (Baker, 1982) in North America, in Altai (Carling et al., 2002) and Sayan (Komatsu et al., 2009) mountain provinces of Siberia (e.g., Images 1 and 2).

Image 1: Gravel dune fields near Kyzyl, capital city of Tuva, along the Yenisei River, Sayan Mountains, Siberia. Gravel dune fields are commonly positioned at the lower end of alluvial fans emanating from nearby massifs, implying that at least some sediments were locally derived from the fans. They are also located downstream of topographic constrictions, indicating that floodwater conditions had to change along its route for their formation. Image is approximately 5 km wide. From Komatsu et al. (2009).

(more…)

Wind abraded ventifacts on Mars and Earth

Post by Dr. Julie Laity .

Ventifacts are rocks abraded and shaped by windblown particles, characterized by their distinctive morphology and texture (Laity, 1994). Many show one or more facets, separated by sharp keels that form through progressive planation by impacting sand grains (Laity and Bridges, 2008).

Image 1: Martian ventifacts showing windward-facing beveled surfaces (facets) and striations that parallel the wind direction. Wind tails often form behind the ventifacts. Spirit Sol 584, 11:41:36 Local Solar – PanCam, Left 2

(more…)

Yardangs in Australia and on Mars

Post by Dr. Jonathan Clarke.

Yardangs are elongate wind erosion features that occur at all scales from micro-yardangs (centimetres in height, up to a metre in length) to meso-yardangs (metres in height, ten or so metres in length) and ultimately mega-yardangs (tens of metres in height, hundreds of metres of kilometres in length).

Image 1: Pseudo-true colour, oblique projected HRSC image of mega-yardangs south of Olympus Mons being eroded into the Medusae Fossae Formation. HRSC Image Archive

(more…)

Ventifacts on Earth and Mars

Post by Nathan Bridges.

Definition and Significance of Ventifacts

Ventifacts are rocks abraded by windblown particles, generally or exclusively sand (Laity and Bridges, 2009). On Earth, they are found mostly in arid regions with little vegetation, a fairly abundant supply of sand (or an ancient supply for relict ventifacts), and winds capable of exceeding the threshold speed necessary for sand movement. Their form depends on original rock texture, shape, and composition, with common forms including facets sloping into the wind and wind-aligned elongated pits, flutes, and grooves. The direction of facet dip slopes and the long axes of textures serve as proxies for the predominant highest speed winds that carried the sand and thereby serve as paleowind indicators. It is common for ventifact textures to result from mineralogical or petrological hardness variations in the rock or from primary textures such as vesicles.

Dunes West of Hellas Planitia, Mars

Image 1:a) Elongated pits and flutes in limestone/marble within the Little Cowhole Mountains, Mojave Desert, CA. b) Pits, some maybe primary vesicles, and flutes in basalt from the Cady Mountains, Mojave Desert, c) Flutes in Diorite from hills east of Silver Lake, Mojave Desert.

(more…)

Linear-Lee Dunes on Mars and Earth

Post by Haim Tsoar.

The discovery of dunes on Mars:

Mariner 9, launched on May 30, 1971 conducted an intensive orbital reconnaissance of the red planet between November 14, 1971 and October 22, 1972. One of the astonishing discoveries of Mariner 9 was vast dune fields all over the Red Planet. Viking discovered many more dune fields in the late 1970s. However, the resolution of the images taken by Mariner 9 and Viking 1 and 2 was very poor and one dominant dune type of barchan and transverse dunes was chiefly discerned by this low resolution (Tsoar et al, 1979). The Mars Global Surveyor (MGS) was the next successful mission to Mars, launched 20 years after Viking, in November 1996, and operated for 10 years. The Mars Orbiter Camera (MOC) on board MGS acquired high resolution images of the sand dunes on Mars and revealed some other dune types that were not known before. The latest mission to Mars, the Mars Reconnaissance Orbiter not only reveals the variety of dunes but its high resolution camera (HiRISE) allows us to see the smaller ripples on the dunes.

Dunes West of Hellas Planitia, Mars

Image 1: Barchan and linear dunes west of Hellas Planitia near 41.8°S, 315.5°W, formed on the floor of a crater and extending from a mesa. Note the breakdown of the rectilinear dune into barchans with distance from the flow obstruction. HiRISE Image PSP_007676_1385.

(more…)

Impact Craters on Earth and Mars: Monturaqui and Bonneville

Post by Nathalie Cabrol and the High Lakes Science Expedition.

Impact processes are fundamental in the creation of planets, the modification of their landscape, and for Earth, in the evolution of life. However, unlike the other planets of our solar system, Earth has not kept a large record of its impact history. Plate tectonic and erosional processes have erased most of them with time. Small impact craters, in particular, are difficult to preserve but there are still a few left, including the Monturaqui impact crater (23°56’S/68°17’W) located in the Atacama Desert in Chile.

Maturaqui Crater, Chile, Earth

Image 1: Monturaqui impact crater in the Atacama Desert of Chile. Credit: Planetary Spherules Project, Nathalie A. Cabrol, NASA Ames/SETI CSC.

(more…)

Yardangs on Earth and Mars

Post by Dr. Lori Fenton.

A yardang is a topographical feature that has been carved out of a surface by the wind. The word is derived from the Turkic word yar, which means ridge or steep bank. On Earth they are most commonly found in deserts where there is a sand supply, which abrades the surface when moved by the wind, and soft sedimentary rocks that the sand easily erodes. Over time, the sand wears down the surface into beautiful streamlined shapes that are aligned with the prevailing sand-moving winds.

Emmenides Dorsum, Mars

Image 1: Emmenides Dorsum on Mars. Image captured with the Thermal Emission Imaging System visual camera (THEMIS VIS V12350012), taken on Sept. 26, 2004. Yardangs reveal that this surface has been wind-sculpted and planed off by ~450 m.

(more…)

Lava Flows on Mars, Io, and Earth

Post by Dr. Jim Zimbelman

Lava flows are one of the common landforms encountered on various objects throughout the inner solar system, as well as on Jupiter’s volcanically active moon Io. Cameras and other remote sensing instruments on various spacecraft have returned an incredible amount of data about lava flows on planetary surfaces. Here we will highlight a couple of examples, along with recent work on lava flows on Earth that is providing new insight into how we can study lava flows on other planets.

Lava Flow on Ascraeus Mons, Mars

Image 1: The image is a portion of frame S08-02516 taken by the Mars Orbiter Camera, which shows part of a heavily cratered lava flow on the flank of the Ascraeus Mons shield volcano in the Tharsis region. The abundance of impact craters on the flow indicates that it is not very recent.

(more…)

Meridiani on the Murray

Post by Dr. Jonathan Clarke

Soon after landing at Meridiani Planum the Opportunity rover imaged some curious wind erosion features. These were the haematite concretions commonly known as “blueberries” standing out from the substrate on stalks up to a cm or so in length. Good examples were seen at Eagle Crater, others were imaged at Fram Crater (Image 1). In places, the concretion has protected the underlying substrate from erosion. Sediments hosting the hematitic concretions have been eroded, leaving some concretions perched on small stalks. Several rocks at the Spirit landing site also show pedestals or fingers projecting away from rock surfaces.

Dedos on Meridiani Planum, Mars

Image 1: Two approximate true colour Pancam images of a boulder in Fram Crater, Meridiani Planum showing haematite concretions with a residual tail or stalk. The circular depression in the lower panel is from drilling by the RAT instrument. It is 45 mm in diameter. Top panel Sol085B_P2532_1. Credit: NASA/JPL/Cornell. Bottom panel image Sol088B_P2542_1. Credit: NASA/JPL/Cornell.

(more…)

Inverted Paleochannels on Earth and Mars

Posted by Dr. Rebecca Williams

Inversion of relief is a common attribute of landscape evolution and can occur wherever materials in valley bottoms are, or become, more resistant to erosion than the adjacent valley slopes.

Sinuous ridge, Utah, Earth

Sinuous ridge, Utah, Earth
Image 1: An oblique aerial photograph of a carbonate-cemented, sinuous inverted paleochannel segment located approximately 11 kilometers southwest of Green River, Utah.

(more…)

Frozen Seas on Mars and Earth


Posted by
Dr. Matt Balme, Open University, UK. 

(Re-posted from IAG Image of the Month, October, 2007)

Elysium Planitia

Images of the ‘frozen sea’ on Mars (a,b) from the High Resolution Stereo Camera of the ESA Mars Express Mission, and pack-ice (c) in the terrestrial Antarctic.

(more…)

  • Enter your email address to follow this blog and receive notifications of new posts by email.

  • Blog Stats

    • 63,164 hits
  • Io

  • Mercury Tectonics