Landforms indicative of regional warm based glaciation, Phlegra Montes, Mars.

Post contributed by Dr Colman Gallagher, UCD School of Geography and UCD Earth Institute, University College Dublin, Ireland.

Viscous flow features occur in the mid-latitudes of Mars and have characteristics consistent with being debris-covered glaciers. Climate models suggest that martian glaciers are cold-based systems in which meltwater has never been widely produced but Gallagher et al. (2021) described a widespread assemblage of landforms in Phlegra Montes (Image 1) that are morphologically analogous to landforms classified by Glasser and Bennett (2004) as indicative of warm-based glacial erosion on Earth. This suggests that glaciers in this region produced meltwater in the past. Warm-based glaciers reach the melting point at their beds, allowing them to slide over their beds and erode the underlying landscape. Meltwater produced by warm-based glaciers can also flow across the bed and erode subglacial meltwater valleys. Landforms of glacial erosion identified by Gallagher et al. (2021) include zones of aerial scour, glacial troughs (Image 2), corries (cirques; Image 3), lee-side rock cavities, streamlined bedrock forms, rock grooves (Image 4), subglacial meltwater channels (Image 4), and tunnel valleys. This is in addition to a depositional glacial meltwater landform called an esker, which was discovered by Gallagher and Balme (2015) and you can read about in a previous post here.

Image 1. Elevation map of Mars showing the location of Phlegra Montes. Blue regions are low elevation and red/white regions are high elevation (MOLA elevation data credit: USGS, NASA, JPL).

(more…)

Possible Closed-System Pingos in Utopia Planitia, Mars

Post by Dr. Richard Soare, Geography Department, Dawson College, Montreal, QC H3Z 1A4, Canada.

On Earth, hydrostatic or closed-system pingos (CSPs) are perennial ice-cored mounds formed by the freeze-thaw cycling of water when or as thermokarst lakes lose their water by drainage or evaporation. The mounds vary in shape from circular or sub-circular to elongate, are sub-kilometer in their long axes and may reach decameters in height. Some mounds show summit depressions, radial fractures and tiers. As the CSPs degrade, small-scale debris flows or slumps may occur; end-stage degradation often is marked by debris-laden ramparts elevated symmetrically or asymmetrically above the surrounding terrain. The presence of closed-system pingos on Mars might thus inform us about the planets’ past and/or present hydrologic conditions (Image 1).

Fig. 1

Image 1: Candidate closed-system pingos (CSPs) at the mid latitudes of Utopia Planitia, Mars
(HiRISE image ESP 027650_2275). Note the location of the potentially ice-cored mounds in polygonised thermokarst-like depressions and the interesting mound morphologies. On Earth, CSPs form almost uniquely in the midst of drained or water-depleted thermokarst lakes (alases) that are nested in ice-rich terrain. On Mars, we propose that the depressions form by the sublimation-driven loss of near-surface ice; this would also be the principal driver of ice-core depletion and/or collapse. Mounds 1-4 exhibit circular shapes and summit depressions that are commonplace amongst CSPs in regions like the Tuktoyaktuk Coastlands of northern Canada. The crescentic shape of Mound 5 could be a marker of mound collapse and the deflation/sublimation of a near-surface ice core, the geological buttress of pingo topography on Earth.

(more…)

  • Enter your email address to follow this blog and receive notifications of new posts by email.

  • Io

  • Blog Stats

    • 192,901 hits