Flow deposits on Mercury – Impact ejecta flows or landslides?

Post contributed by Alistair Blance, The Open University, UK

During an impact on Mercury’s surface, material is ejected from the forming impact crater. As Mercury has only a tenuous atmosphere, ejected material travels predominantly ballistically, creating an ejecta deposit around the crater that thins gradually with increasing distance. However, large deposits emplaced by ground-hugging flows can be found around some impact craters on Mercury (Image 1). Evidence for flow includes material being diverted around obstacles, a steep edge or distal ridge at deposit margins, and a lobate shape to several examples. Some flow deposits extend outwards around a whole crater, but often they are confined within topographic lows adjacent to the crater. To help assess the origin of these features, it is useful to compare them to similar features across the Solar System. This comparison may also indicate how differences between the planets can influence the development of flows around craters.

Image 1: Flow deposits around craters on Mercury. Deposit boundaries indicated with red triangles. (A) Flow deposit extending from the central crater into an underlying crater in the top right of the image. Steep margins with a lobate shape suggest emplacement by flow. Image taken from MESSENGER MDIS BDR Global Basemap. (B) A crater with two sections of flow deposit extending into the underlying crater in the bottom right of the image. Image taken from MESSENGER MDIS frame EW0260906588G. (C) Sketch map of the image in B. Shows the two sections of flow deposit in red, with hypothesised direction of emplacement shown with red arrows. The deposit appears to have been diverted around a central peak within the underlying crater, providing evidence for emplacement via ground-hugging flow.

(more…)

Overlapping Lobate Deposits in Martian Gullies

Post contributed by Rishitosh K. Sinha, Planetary Sciences Division, Physical Research Laboratory, India.

Gullies are found on steep slopes on the surface of Mars and appear as a linear-to-sinuous channel linking an alcove at the top to a fan at the bottom. The most interesting interpretation of the past two decades has been that the Martian gullies were carved by the flow of liquid water as discovered from the high-resolution images returned by the Mars Orbiter Camera (MOC) onboard “Mars Global Surveyor (MGS)” in 2000 (Malin and Edgett, 2000). Subsequent observations using MOC and the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) images revealed that Martian gullies are active today and that sublimation of seasonal carbon dioxide frost – not liquid water – could have played an important role in their formation. In our recent work using HiRISE images we reported global distribution of overlapping lobate deposits in gullies (Image 1) showing that a debris-flow like process may be responsible for gully formation (Sinha et al., 2020).

Image 1: Top: 3D view of gullies on the pole-facing wall of ~8 km diameter Los crater (35.08˚ S, 76.22˚ W) on Mars. HiRISE image ESP_020774_1445 (0.25 m/pixel) is draped over 1 m/pix HiRISE elevation model. The depth of crater floor from the crater rim is ~1 km in elevation and the image spans ~4 km from left to right. The box shows the location of bottom panel. Bottom: Image shows the gully fan surface within Los crater with overlapping lobate deposits, including convex-up and tongue shaped terminal lobes with lateral levees. HiRISE image credits: NASA/JPL/University of Arizona.

(more…)

Very recent debris flow activity on Mars

Post contributed by Dr Andreas Johnsson, Department of Earth Sciences, University of Gothenburg, Sweden.

The question whether Martian gullies formed by fluvial processes or by dry mass wasting have been a source of heated debate ever since their discovery (Malin and Edgett, 2000). Intense research within the last decade however points to a fluvial origin for a majority of gully landforms on Mars.

Image 1. A) Overview of the pole-facing interior crater wall (PSP_006837_1345). B) Clearly defined paired levee deposits (white arrows). C) Multiple overlapping lobate deposits (white arrows). D) Gully fan dominated by debris flows (white arrows). E) Well defined medial deposit (debris plug) (white arrow).  Image credit: NASA/JPL/UofA for HiRISE.

Image 1. A) Overview of the pole-facing interior crater wall (PSP_006837_1345). B) Clearly defined paired levee deposits (white arrows). C) Multiple overlapping lobate deposits (white arrows). D) Gully fan dominated by debris flows (white arrows). E) Well defined medial deposit (debris plug) (white arrow). Image credit: NASA/JPL/UofA for HiRISE.

(more…)

  • Enter your email address to follow this blog and receive notifications of new posts by email.

  • Io

  • Blog Stats

    • 192,899 hits