Overlapping Lobate Deposits in Martian Gullies

Post contributed by Rishitosh K. Sinha, Planetary Sciences Division, Physical Research Laboratory, India.

Gullies are found on steep slopes on the surface of Mars and appear as a linear-to-sinuous channel linking an alcove at the top to a fan at the bottom. The most interesting interpretation of the past two decades has been that the Martian gullies were carved by the flow of liquid water as discovered from the high-resolution images returned by the Mars Orbiter Camera (MOC) onboard “Mars Global Surveyor (MGS)” in 2000 (Malin and Edgett, 2000). Subsequent observations using MOC and the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) images revealed that Martian gullies are active today and that sublimation of seasonal carbon dioxide frost – not liquid water – could have played an important role in their formation. In our recent work using HiRISE images we reported global distribution of overlapping lobate deposits in gullies (Image 1) showing that a debris-flow like process may be responsible for gully formation (Sinha et al., 2020).

Image 1: Top: 3D view of gullies on the pole-facing wall of ~8 km diameter Los crater (35.08˚ S, 76.22˚ W) on Mars. HiRISE image ESP_020774_1445 (0.25 m/pixel) is draped over 1 m/pix HiRISE elevation model. The depth of crater floor from the crater rim is ~1 km in elevation and the image spans ~4 km from left to right. The box shows the location of bottom panel. Bottom: Image shows the gully fan surface within Los crater with overlapping lobate deposits, including convex-up and tongue shaped terminal lobes with lateral levees. HiRISE image credits: NASA/JPL/University of Arizona.

(more…)

Chaotic Terrain on Pluto, Europa, and Mars

Post contributed by Helle L. Skjetne, PhD candidate, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, USA.

Chaos terrain is formed by disruption of preexisting surfaces into irregularly shaped blocks with a “chaotic” appearance (Image 1). This typically occurs through fracturing (that can be induced by a variety of mechanisms), and the subsequent evolution of these blocks can follow several paths (Image 2). These distinctive areas of broken terrains are most notably found on Jupiter’s moon Europa, Mars, and Pluto. Although chaos terrains on these bodies share some common characteristics, there are also distinct morphological differences between them (Image 1). The geologic evolution required to shape this enigmatic terrain type has not yet been fully constrained, although several chaos formation models have been proposed. We studied chaotic terrain blocks on Pluto, Europa and Mars to infer information about crustal lithology and surface layer thickness (Skjetne et al. 2020).

Image 1: Examples of chaotic terrain “blocks” (referring to each mountain-like topographic feature). Chaos on Pluto in a) Tenzing Montes and b) Al-Idrisi Montes, respectively (New Horizons image at ~315 m px–1), c) Hydraotes Chaos on Mars (Mars Odyssey THEMIS daytime infrared global mosaic at 100 m px–1), and d) Conamara Chaos on Europa (Galileo 210–220 m px–1 East and West RegMaps).

(more…)

Superposed glaciers on Mars: what, where, when, and why?

Post contributed by Adam J. Hepburn, Department of Geography and Earth Sciences, Aberystwyth University, UK.

Mars hosts abundant glacier-like landforms throughout its mid-latitudes, the presence of which necessitates major shifts in climate relative to present conditions. These ice-rich viscous flow features (VFFs) are typically found in coalescing, size-hierarchical systems whereby lower-order glacier-like forms (GLFs; ~5 km long) flow from alcoves and merge with higher-order lineated valley fill (LVF; 100s of km long). Several larger VFFs have been dated previously, indicating Mars underwent glaciation in the past several hundred million years, during the late Amazonian epoch.  However, several authors have noted examples of GLFs flowing onto, rather than into, LVFs (Image 1), and hypothesised that these may correspond to a more recent phase of glacial activity. We used crater dating to ascertain that—in addition to the earlier phase of widespread regional glaciation—these superposed GLFs (SGLFs) were formed following at least two major cycles of more recent alpine glaciation, the latter of which ended ~2 million years ago.

Image 1: Superposed glacier-like form (SGLF) flowing onto the underlying viscous flow feature (underlying VFF), in the Protonilus Mensae region of Mars. (A–B) North-up orientated HiRISE image (ESP_018857_2225) image of an SGLF (light blue) emerging from an alcove and flowing onto lineated valley fill (dark blue). Approximate location of image centre is 42.23◦ N, 50.53◦ E. Reproduced from Hepburn et al, 2020.

(more…)
  • Enter your email address to follow this blog and receive notifications of new posts by email.

  • Io

  • Blog Stats

    • 128,389 hits