Sedimentology and Hydrology of an Amazonian paleo-fluivo-lacustrine systems on Mars (Moa Valles)

Post contributed by Francesco Salese from IRSPS/Dipartimento INGEO, Università D’Annunzio, Pescara, Italy.

Mars, is one of the planetary bodies where water flowed and where it may transiently flow today under certain conditions. Many martian paleodrainage systems and well-preserved fluvial and lacustrine deposits have been recognized and studied in the last two decades (see further reading). Widespread dendritic valley networks and the presence of extensive fluvial features on ancient martian terrains suggest that a relatively “warm and wet” climate was prevalent early in the planet’s history (about 3.7 Ga). This is in stark contrast with the hyper-arid, extremely cold climate that is thought to have persisted from 3 Ga until the present (Amazonian Era). The subject of this post is Moa Valles [Salese et al., 2016], which is a 2 billion year old paleodrainage system (Figure 1) that is nearly 300 km long and is carved into ancient highland terrains of Tempe Terra in the northern hemisphere of Mars. Understanding the origin and evolution of this type of complex and interconnected paleo-fluvio-lacustrine system is critical for understanding the early martian climate.


Figure 1: The upper panel shows the THEMIS-VIS daytime mosaic of Moa Vallis system.The lower panel is a line drawing showing the channel system in blue lines, red dotted lines represent wrinkle ridges, the drainage basin is delimited in grey, and fan-shaped and deltaic deposits in orange. The total mapped length of the channel as shown here is ~325 km, and the flow direction is towards the east.


Paleolakes on Mars

Post by Dr. Gino Erkeling, Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Germany

The hypothesis of ancient Martian standing bodies of water, which might have occupied the lowlands of the northern hemisphere and which might have existed in local- to regional-scale paleolakes once in Martian history, is one of the most important subjects of ongoing discussion in Mars research (e.g., Parker et al., 1989, 1993; Head et al., 1999; Cabrol and Grin, 1999, 2001; Clifford and Parker, 2001; Kreslavsky and Head, 2002; Carr and Head, 2003; Ghatan and Zimbelman, 2006; Di Achille and Hynek, 2010; Mouginot et al., 2012). The case for large standing bodies of liquid water, including lakes, seas and oceans, is attributed to a complex hydrologic cycle that may have once existed on Mars in the Noachian (>3.7 Ga) and perhaps also in the Hesperian (>3.1 Ga).

Erkeling_etal_2012_IAG_figure (more…)

Deltaic sediments on Mars

Post by Dr. Bethany Ehlmann

The Nili Fossae region of Mars has a diversity of minerals that include mafics and phyllosilicates. The mineral assemblage suggests widespread liquid water activity and a variety of alteration processes from surface weathering to hydrothermal processes (Mangold et al., 2007).

Nili Fossae, Mars

Image 1: CRISM infrared spectrometer data (wavelengths: 2.38 um (red), 1.80 um (green), 1.15 um (blue) acquired at 35 m/pixel have been used to colorize a Context Imager grayscale image, taken at 5 m/pixel resolution.


  • Enter your email address to follow this blog and receive notifications of new posts by email.

  • Blog Stats

    • 60,564 hits
  • Io

  • Mercury Tectonics